skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Devan, Megan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT Soil water content (SWC) data are central to evaluating how soil moisture varies over time and space and influences critical plant and ecosystem functions, especially in water‐limited drylands. However, sensors that record SWC at high frequencies often malfunction, leading to incomplete timeseries and limiting our understanding of dryland ecosystem dynamics. We developed an analytical approach to impute missing SWC data, which we tested at six eddy flux tower sites along an elevation gradient in the southwestern United States. We impute missing data as a mixture of linearly interpolated SWC between the observed endpoints of a missing data gap and SWC simulated by an ecosystem water balance model (SOILWAT2). Within a Bayesian framework, we allowed the relative utility (mixture weight) of each component (linearly interpolated vs. SOILWAT2) to vary by depth, site and gap characteristics. We explored “fixed” weights versus “dynamic” weights that vary as a function of cumulative precipitation, average temperature, and time since the start of the gap. Both models estimated missing SWC data well (R2 = 0.70–0.88 vs. 0.75–0.91 for fixed vs. dynamic weights, respectively), but the utility of linearly interpolated versus SOILWAT2 values depended on site and depth. SOILWAT2 was more useful for more arid sites, shallower depths, longer and warmer gaps and gaps that received greater precipitation. Overall, the mixture model reliably gap‐fills SWC, while lending insight into processes governing SWC dynamics. This approach to impute missing data could be adapted to accommodate more than two mixture components and other types of environmental timeseries. 
    more » « less